
Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis 20 (2013) 629-639
Copyright c⃝2013 Watam Press http://www.watam.org

NOTE OF A THEOREM IN SINGULARITY
THEORY

Hongting Shi1, Yi Zhang2, Xiaosheng Zhang1,
Fang Wang3 and Wenmin Zhang4

1 School of Mathematical Science,
Capital Normal University, Beijing, China, 100048

2College of Science, Department of Mathematics,
China University of Petroleum–Beijing, China, 102249

3 Beijing Chen Jinglun High School, Beijing, China, 100020

4 School of Mathematics & Information,
Langfang Teachers College, Hebei, China, 065000.

Corresponding author email: z y11@126.com

Abstract. Our algorithm for solving the recognition problem in bifurcation theory splits

monomials into three classes: low-order terms, intermediate-order terms and higher-order

terms. In describing the low-order terms, ′the smallest intrinsic ideal containing a germ h′

is introduced by Golubitsky M and Schaeffer D G, then they give a proposition, but the

proof of the proposition is not right. In this paper we prove the proposition again.
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