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Abstract. The fractional order Newton–Leipnik (FONL) system can be written as dαx
dtα

=

−ax+y+10zy, dαy

dtα
= −x−0.4y+5xz, dαz

dtα
= bz−5xy with a and b being real parameter-

s. In this paper, stability analysis of the FONL system is studied by using the fractional

Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium

points of FONL system. We applied an efficient numerical method based on converting the

fractional derivative to integer derivative to solve the FONL system. The chaotic behavior

of the system discussed also.
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