NUMERICAL CHAOTIC BEHAVIOR OF FRACTIONAL ORDER NEWTON-LEIPNIK SYSTEM

Mohammad Javidi1 and Nemat Nyamadji2

1,2Department of Mathematics
Faculty of Sciences Razi University, 67149 Kermanshah, Iran

Abstract. The fractional order Newton–Leipnik (FONL) system can be written as \(\frac{d^{\alpha}x}{dt^{\alpha}} = -ax + y + 10zy\), \(\frac{d^{\alpha}y}{dt^{\alpha}} = -x - 0.4y + 5xz\), \(\frac{d^{\alpha}z}{dt^{\alpha}} = bz - 5xy\) with a and b being real parameters. In this paper, stability analysis of the FONL system is studied by using the fractional Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium points of FONL system. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the FONL system. The chaotic behavior of the system discussed also.

Keywords. Newton–Leipnik system, Routh–Hurwitz conditions, chaos.
References

Received May 2012; revised April 2013.

email: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/~journal/