ON A THIRD ORDER RATIONAL DIFFERENCE EQUATION WITH VARIABLE COEFFICIENTS

T. F. Ibrahim1,2 and N. Touafek3

1Department of Mathematics, Faculty of Sciences and arts (S.A.)
King Khalid University, Abha, Saudi Arabia

2Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
E-mail: tfibrahem@mans.edu.eg

3LMAM Laboratory, Department of Mathematics
Jijel University, Jijel 18000, Algeria
E-mail: nstouafek@yahoo.fr

\textbf{Abstract.} In this paper we investigate the solutions of the rational difference equation

\[x_{n+1} = \frac{x_{n-1}x_{n-2}}{x_n(a_n + b_n x_{n-1} x_{n-2})}, \quad n \in \mathbb{N}_0 \]

where \((a_n)_{n \in \mathbb{N}_0}, (b_n)_{n \in \mathbb{N}_0}\) are real two-periodic sequences and the initial values \(x_{-2}, x_{-1}, x_0\) are non-zero real numbers.

\textbf{Keywords.} Difference equations, local stability, periodicity, recursive sequence, rational difference equations.

\textbf{AMS (MOS) subject classification:} 39A10, 40A05.

References

[1] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{x_{n-1}}{1+x_{n}x_{n-1}}$, Appl. Math. Comp., 150, (2004), 21-24.

[12] T. F. Ibrahim, On the third order rational difference equation $x_{n+1} = \frac{x_{n-3}}{x_{n-2} + \beta x_{n}x_{n-2}}$, Int. J. Contemp. Math. Sci., 4, (2009), 1321-1334.

[21] I. Ozturc, F. Bozkurt and S. Ozen, On the difference equation $y_{n+1} = \frac{a_{n}x_{n} - y_{n}}{b_{n}y_{n-1}}$, Appl. Math. Comput., 181, (2006), 1387-1393.

[27] I. Yalçinkaya, On the difference equation $x_{n+1} = \alpha + \frac{x_{n-2}}{x_n}$, *Fasc. Math.*, 42, (2009), 133-139.

Received August 2012; revised April 2013.

email: journal@monotone.uwaterloo.ca

http://monotone.uwaterloo.ca/~journal/