Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 20 (2013) 53-63 Copyright ©2013 Watam Press

 $\rm http://www.watam.org$

SOLUTIONS OF A NONLINEAR FOURTH ORDER PERIODIC BOUNDARY VALUE PROBLEM FOR DIFFERENCE EQUATIONS

John R. Graef^{*}, Lingju Kong, and Min Wang

Department of Mathematics, University of Tennessee at Chattanooga Chattanooga, TN 37403, USA *Corresponding author email: John-Graef@utc.edu

Abstract. The authors consider the fourth order periodic boundary value problem

$$\begin{split} &\Delta^4 u(t-2) - \Delta \big(p(t-1) \Delta u(t-1) \big) + q(t) u(t) = f(t,u(t)), \quad t \in [1,N]_{\mathbb{Z}}, \\ &\Delta^i u(-1) = \Delta^i u(N-1), \quad i = 0, 1, 2, 3, \end{split}$$

where $N \geq 1$ is an integer, $p \in C([0, N]_{\mathbb{Z}}, \mathbb{R})$, $q \in C([1, N]_{\mathbb{Z}}, \mathbb{R})$, and $f \in C([1, N]_{\mathbb{Z}} \times \mathbb{R}, \mathbb{R})$. They obtain sufficient conditions for the existence of one and two solutions of the problem. The analysis is based mainly on the variational method and critical point theory.

Keywords. Discrete boundary value problem, fourth order, solutions, variational methods.

AMS (MOS) subject classification: 39A10, 34B15.

Dynam. Cont. Dis. Ser. A, vol. 20, no. 1, pp. 53-63, 2013.

References

- R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, Second Edition, Marcel Dekker, New York, 2000.
- [2] D. R. Anderson and F. Minhós, A discrete fourth-order Lidstone problem with parameters, Appl. Math. Comput. 214 (2009), 523–533.
- [3] H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.
- [4] A. Cabada and N. Dimitrov, Multiplicity results for nonlinear periodic fourth order difference equations with parameter dependence and singularities, J. Math. Anal. Appl. 371 (2010), 518–533.
- [5] A. Cabada and J. B. Ferreiro, Existence of positive solutions for nth-order periodic difference equations, J. Difference Equ. Appl. 17 (2011), 935–954.
- [6] X. Cai and Z. Guo, Existence of solutions of nonlinear fourth order discrete boundary value problem, J. Difference Equ. Appl. 12 (2006), 459–466.
- [7] J. R. Graef, L. Kong, and M. Wang, Existence of multiple solutions to a discrete fourth order boundary value problem, submitted for publication.
- [8] J. R. Graef, L. Kong, and M. Wang, Multiple solutions to a periodic boundary value problem for a nonlinear discrete fourth order equation, submitted for publication.
- [9] T. He and Y. Su, On discrete fourth-order boundary value problems with three parameters, J. Comput. Appl. Math. 233 (2010), 2506–2520.
- [10] Z. He and J. Yu, On the existence of positive solutions of fourth-order difference equations, Appl. Math. Comput. 161 (2005), 139–148.
- [11] J. Ji and B. Yang, Eigenvalue comparisons for boundary value problems of the discrete beam equation, Adv. Difference Equ. 2006, Art. ID 81025, 9 pp.
- [12] W. G. Kelly and A. C. Peterson, Difference Equations, an Introduction with Applications, Second Edition, Academic Press, New York, 2001.
- [13] R. Ma and Y. Xu, Existence of positive solution for nonlinear fourth-order difference equations, Comput. Math. Appl. 59 (2010), 3770–3777.
- [14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, in: Appl. Math. Scienc., Vol. 74, Springer, New York, 1989.
- [15] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III. New York 1985.
- [16] B. Zhang, L. Kong, Y. Sun, and X. Deng, Existence of positive solutions for BVPs of fourth-order difference equation, *Appl. Math. Comput.* **131** (2002), 583–591.

Received September 2012; revised December 2012.

email: journal@monotone.uwaterloo.ca

 $http://monotone.uwaterloo.ca/{\sim}journal/$

2