
Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis 20 (2013) 1-21
Copyright c©2013 Watam Press http://www.watam.org

ASYMPTOTICALLY PERIODIC
SOLUTIONS OF FRACTIONAL
DIFFERENTIAL EQUATIONS

T. A. Burton1 and Bo Zhang2

1Northwest Research Institute
732 Caroline St., Port Angeles, WA 98362

2Department of Mathematics and Computer Science
Fayetteville State University

Fayetteville, NC 28301

Abstract. In three recent papers investigators have shown that a linear fractional differ-

ential equation can not have a periodic solution. This raises two fundamental questions:

What are the properties of the out-put function if the in-put function is periodic? What are

the properties of perturbations that will leave the out-put function unchanged? We answer

both questions here. The out-put function is asymptotically periodic and it is unchanged

by perturbations which are L1[0,∞) and by perturbations which tend to zero as t → ∞

with these perturbations applied simultaneously in the damping and the forcing terms.

We also find a limiting equation which this periodic function satisfies. The methods used

include limiting equation techniques and fixed point methods involving both contractions

and Krasnoselskii-Schaefer type.
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