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Abstract. The paper is devoted to the study of the uniform exponential stability of evo-

lution families. Following the idea of unifying the discrete-time versions of Barbashin the-

orem and Datko theorem, necessary and sufficient conditions for the uniform exponential

stability are given. As particular cases, the discrete variants for the uniform exponential

stability of some well-known stability results due to Datko and Barbashin are obtained.
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1 Introduction

We denote by R+ the set of all non-negative real numbers, by N the set of
all non-negative integers and we put Np := {j ∈ N : j ≥ p}. We consider
T := {(t, s) : t ≥ s ≥ 0}. Throughout the paper, (X, ‖.‖) denotes a Banach
space, while L(X) denotes the Banach algebra of bounded linear operators
acting on X. For each operator B, D(B) denotes the domain of B. A family
{

U(t, s)
}

t≥ s≥ 0
⊂ L(X) is called to be an evolution family if

- the identity on X can obtained as U(t, t) for every t ≥ 0,

- the cocycle property U(t, s) = U(t, r)U(r, s) holds for all t ≥ r ≥ s ≥ 0,

- the mapping (t, s) → U(t, s)x is continuous for every x ∈ X,

- there exist M,ω such that

‖U(t+ s, s)‖ ≤Meωt, for every (t, s) ∈ R
2
+. (1.1)

Evolution families that we consider, arise as solution operators of the so-
called abstract Cauchy problem. Such a problem states as follows: Let A(s) :
D(A(s)) ⊂ X → X be a (possibly unbounded) linear operator on Banach


