Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 19 (2012) 717-728 Copyright ©2012 Watam Press

http://www.watam.org

A CLASS OF NONLINEAR BVPS FOR FIRST-ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

Jing Zhao^{1,2} Jiangfeng Han¹ and Yanping Deng¹

¹College of Science

Guangxi University for Nationalities, Nanning, Guangxi, 530006, P. R. China

²Guangxi Key laboratory of hybrid computation and IC design analysis E-mail: jingzhao100@126.com

Abstract. This paper is devoted to the existence of extremal solutions for first-order impulsive integro-differential equations. The approach relies on the use of the method of upper and lower solutions in reversed order and monotone iterative technique. By establishing a new comparison result, we show the existence of extremal solutions under certain assumptions.

Keywords. Impulsive integro-differential equation, Upper and lower solutions in reversed order, Monotone iterative technique, Nonlinear boundary value problem.

AMS (MOS) subject classification: 34G25,39J35,45N05.

1 Introduction

Consider the following first-order impulsive integro-differential equations with nonlinear boundary conditions

$$\begin{cases} x'(t) = f(t, x(t), (Tx)(t), (Sx)(t)) & t \in J^{-} \\ \Delta x(t_{k}) = I_{k}(x(t_{k})) & k = 1, 2, \dots, m \\ g(x(0), x(T)) = 0 & (1.1) \end{cases}$$

where $f \in C(J \times R^3, R)$, $g \in (R^2, R)$, J = [0, T], $J^- = J - \{t_1, t_2, \dots, t_m\}$, $0 = t_0 < t_1 < t_2 < \dots < t_m < t_{m+1} = T$, $I_k \in C(R, R)$, $\Delta x(t_k) = x(t_k^+) - x(t_k^-)$, $x(t_k^+)$ and $x(t_k^-)$ denote the right and the left limit of x(t) for $t = t_k$, $(k = 1, 2, \dots, m)$ respectively,

$$(Tx)(t) = \int_0^t k(t,s)x(s)ds,$$
 $(Sx)(t) = \int_0^T h(t,s)x(s)ds$

 $k \in C(D,R^+), \ D = \{(t,s) \in J \times J: \ t \geq s\}, \ h \in C(J \times J,R^+), \ R^+ = [0,\infty).$

Recently, the general theory of impulsive differential equations has become an important aspect of differential equations for its extensively application (cf. [1],[5],[8],[10],[15-18]). As an important branch, boundary value problems (BVPS) have drawn much attention in [3],[6-7],[14].