EXACT SOLUTIONS FOR A CLASS OF RATHOLES IN HIGHLY FRICTIONAL GRANULAR SOLIDS

Daniel J. Arrigo, Long Le and Jason W. Torrence
Department of Mathematics
University of Central Arkansas, Conway AR 72035
Corresponding author email: darrigo@uca.edu

Abstract. The governing equations for the stress field for Coulomb-Mohr granular solids are highly nonlinear and hence only a few analytical solutions are known. In the special case of highly frictional materials (where the internal angle of friction is ninety degrees), exact parametric solutions exist for plane and axially symmetric ratholes in the form of wedge, quadratic and cubic profiles. In this paper, we will show that in the highly frictional case, these governing equations are in fact linearizable. In particular, we consider power law ratholes superimposed upon a wedge hopper base. Two examples are considered where stress fields are determined as the hopper wedge/cone angle is varied.

Keywords. Highly Frictional Granular Solids, Ratholes, Diffusion Equation.

AMS (MOS) subject classification: 35Q86, 76T25, 35A22.
References


Received October 2010; revised January 2011; revised September 2011.

email: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/~journal/