RISK-INDUCED BACKWARD BIFURCATION IN HSV-2 TRANSMISSION DYNAMICS

C.N. Podder1 and A.B. Gumel2

1Department of Mathematics
University of Dhaka, Dhaka-1000, Bangladesh

2Department of Mathematics
University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Corresponding author email: gumelab@cc.umanitoba.ca

Abstract. A risk-structured, two-sex, model for the transmission dynamics of herpes simplex virus type 2 (HSV-2) in a population is designed and qualitatively analysed. It is shown that adding risk structure (i.e., the risk of transmitting or acquiring HSV-2 infection) to an HSV-2 transmission model causes the phenomenon of backward bifurcation when the associated reproduction threshold is less than unity. This dynamical feature, which has non-trivial consequence on the persistence or elimination of the disease (when the reproduction threshold is less than unity), can be removed if the susceptible male and female sub populations are not stratified according to the risk of acquiring HSV-2 infection.

Keywords. HSV-2; low- and high-risk groups; equilibria; stability; backward bifurcation.
References

Received April 2010; revised October 2011.

http://monotone.uwaterloo.ca/~journal/