OPTIMAL CONTROL OF THE SWEEPING PROCESS

G. Colombo1 R. Henrion2 N. D. Hoang3 and B. S. Mordukhovich3

1Dipartimento di Matematica Pura e Applicata
Università di Padova, via Trieste 63, 35121 Padova, Italy (colombo@math.unipd.it)
Research of this author was partially supported by the CARIPARO project “Nonlinear Partial Differential Equations: Models, Analysis, and Control-Theoretical Problems”

2Weierstrass Institute for Applied Analysis and Stochastics
10117 Berlin, Germany (henrion@wias-berlin.de)
Research of this author was partially supported by the DFG Research Center MATHEON in Berlin

3Department of Mathematics
Wayne State University, Detroit, MI 48202, USA (ndhoang@wayne.edu, boris@math.wayne.edu)
Research of these authors was partly supported by the US National Science Foundation under grants DMS-0603846 and DMS-1007132

Abstract. We formulate and study an optimal control problem for the sweeping (Moreau) process, where control functions enter the moving sweeping set. To the best of our knowledge, this is the first study in the literature devoted to optimal control of the sweeping process. We first establish an existence theorem of optimal solutions and then derive necessary optimality conditions for this optimal control problem of a new type, where the dynamics is governed by discontinuous differential inclusions with variable right-hand sides. Our approach to necessary optimality conditions is based on the method of discrete approximations and advanced tools of variational analysis and generalized differentiation. The final results obtained are given in terms of the initial data of the controlled sweeping process and are illustrated by nontrivial examples.

Keywords. sweeping process, optimal control, dissipative differential inclusions, variational analysis, generalized differentiation.

AMS (MOS) subject classification: 49J52, 49J53, 49K24, 49M235, 90C30
References

Received May 2011; revised July 2011, revised August 2011 (2).

email: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/~journal/