THE POWER QUANTUM CALCULUS
AND VARIATIONAL PROBLEMS

Khaled A. Aldwoah1, Agnieszka B. Malinowska2, and Delfim F. M. Torres3

1Department of Mathematics, College of Science
Jazan University, Jazan, Saudi Arabia

2Faculty of Computer Science, Bialystok University of Technology
15-351 Bialystok, Poland

3Center for Research and Development in Mathematics and Applications
Department of Mathematics, University of Aveiro
3810-193 Aveiro, Portugal

Corresponding author email: delfim@ua.pt

Abstract. We introduce the power difference calculus based on the operator $D_{n,q}f(t) = \frac{f(q^n t) - f(t)}{q^n - 1}$, where n is an odd positive integer and $0 < q < 1$. Properties of the new operator and its inverse — the $d_{n,q}$ integral — are proved. As an application, we consider power quantum Lagrangian systems and corresponding n,q-Euler–Lagrange equations.

Keywords. Quantum variational problems; n,q-power difference operator; generalized Nörlund sum; generalized Jackson integral; n,q-difference equations.

AMS (MOS) subject classification: 39A13; 39A70; 49K05; 49S05.
References

Received January 2011; revised June 2011; revised August 2011.

email: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/~journal/