CHEAP QUADRATIC CONTROL OF LINEAR SYSTEMS WITH STATE AND CONTROL DELAYS

Valery Y. Glizer
Department of Mathematics
Ort Braude College, P.O. Box 78, Karmiel 21982, Israel

Abstract. A finite horizon quadratic cheap control of a linear system with point-wise and distributed time delays in the state and control variables is considered. By a linear transformation, this problem is converted to an equivalent linear-quadratic cheap control problem for a much simpler (undelayed) system. For this new problem, asymptotic expansions of the optimal control and the optimal value of the cost functional are constructed. The boundedness of the optimal control is established. The limit of the optimal value of the cost functional is obtained. Based on these results, an asymptotic behavior of solution to the original control problem is analyzed. Illustrative examples are presented.

Keywords. Time delay system, cheap control problem, asymptotic expansion, control boundedness, maximal achievable accuracy.

AMS (MOS) subject classification: 93C23, 49N10, 93C73, 93B05
References

[38] P. Sannuti, Direct singular perturbation analysis of high-gain and cheap control problems, Automatica, 19, (1983) 41-51.


Received February 2011; revised April 2011; revised August 2011 (2).

e-mail: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/~journal/