http://www.watam.org

AN EXISTENCE THEOREM FOR THE COMMON SOLUTIONS FOR A PAIR OF INTEGRAL INCLUSIONS

Ishak Altun¹ and Duran Turkoglu²

¹Department of Mathematics, Faculty of Science and Arts Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey

²Department of Mathematics, Faculty of Science and Arts Gazi University, 06500 Teknikokullar, Ankara, Turkey

Abstract. In this paper we prove an existence theorem for the common solutions for a pair of integral inclusions via a common fixed point theorem of Turkoglu et al.[10].

Keywords. Banach spaces, fixed point, multivalued mapping, condensing mapping, integral inclusions.

AMS (MOS) subject classification: 54H25, 47H10.

1 Introduction

Let \mathcal{R} denote the real line, E be a Banach space with norm $\|.\|_E$ and let C(E) denote the class of all nonempty closed subsets of E. Given a closed and bounded interval J = [0, 1] in \mathcal{R} , consider the integral inclusions

$$x(t) \in q(t) + \int_{0}^{\sigma(t)} k(t,s)F(s,x(s))ds$$
(1)

$$x(t) \in q(t) + \int_{0}^{\sigma(t)} k(t,s)G(s,x(s))ds$$

$$\tag{2}$$

for $t \in J$, where $\sigma : J \to J$, $q : J \to E$, $k : J \times J \to \mathcal{R}$ are continuous and $F, G : J \times E \to C(E)$.

By a common solution for the integral inclusions (1) and (2), we mean a continuous function $x: J \to E$ such that

$$x(t) = q(t) + \int_{0}^{\sigma(t)} k(t,s)v_1(s)ds$$

and

$$x(t) = q(t) + \int_{0}^{\sigma(t)} k(t,s)v_2(s)ds$$