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Abstract. This paper deals with the existence and multiplicity of positive solutions for
singular boundary value problems of nonlinear ordinary differential systems





(−1)mu(2m) = λa(t)f(t, u(t), v(t)), a.e. t ∈ [0, 1],

(−1)nv(2n) = µb(t)g(t, u(t), v(t)), a.e. t ∈ [0, 1],

u(2i)(0) = u(2i)(1) = 0, 0 ≤ i ≤ m− 1,

v(2j)(0) = v(2j)(1) = 0, 0 ≤ j ≤ n− 1,

where λ > 0, µ > 0, m, n ∈ N, f and g are Caratheodory functions. Under suitable

conditions we derive two explicit intervals, and such that λ and µ in the two intervals

respectively. Furthermore, the existence and multiplicity of positive solutions for λ and µ

in appropriate intervals is also discussed. Our approach is based on Krasnosel’skii fixed

point theorem on compression and expansion of cones.
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1 Introduction

The purpose of this paper is to establish the existence of single and multiple
positive solutions to a class of singular boundary value problems for systems
of higher order nonlinear differential equations:





(−1)mu(2m) = λa(t)f(t, u(t), v(t)), a.e. t ∈ [0, 1],
(−1)nv(2n) = µb(t)g(t, u(t), v(t)), a.e. t ∈ [0, 1],
u(2i)(0) = u(2i)(1) = 0, 0 ≤ i ≤ m− 1,
v(2j)(0) = v(2j)(1) = 0, 0 ≤ j ≤ n− 1,

(1.1)

where m,n ∈ N, λ > 0, µ > 0 are positive parameters. a(t), b(t) ∈ L1[[0, 1], [0,
+∞)],f and g are essential bounded functions(see Definition 2.1 of Section
2 ).

Here a positive solution (u∗, v∗) of (1.1) will mean a solution (u∗, v∗) of
(1.1) satisfying u∗(t) ≥ 0, v∗(t) ≥ 0, t ∈ (0, 1).


