Abstract. A solution $X(t)$ of the fifth order nonlinear differential equation
\[x^{(v)} + ax^{(iv)} + bx''' + cx'' + dx' + h(x) = p(t, x, x', x'', x''', x^{(iv)}) \]
with a, b, c, d positive constants, h and p continuous, is said to be a Demidovich limiting regime if $(X^2 + X'^2 + X''^2 + X'''^2 + X^{(iv)}^2) \leq m$ for a finite m and all $t \in \mathbb{R}$, and if every other solution converges to X as $t \to \infty$. In this paper, we give some sufficient conditions in order for all solutions of the equation (*) to converge to a limiting regime under some boundedness restrictions on the incrementary ratio $\frac{h(\zeta + \eta) - h(\zeta)}{\eta}, \eta \neq 0$, and prove that this limiting regime is periodic or almost periodic in t according as p is periodic or almost periodic in t, uniformly in $x, x', x'', x''', x^{(iv)}$.

Keywords. Demidovich’s limiting regime, periodic solutions, almost periodic solutions.

AMS (MOS) subject classification: 34C11, 34C25, 34C27.

1 Introduction

In this paper, we shall consider the fifth order nonlinear differential equation
\[x^{(v)} + ax^{(iv)} + bx''' + cx'' + dx' + h(x) = p(t, x, x', x'', x''', x^{(iv)}), \]
in which a, b, c, d are positive constants and the functions h and p are assumed continuous. Furthermore the function h is assumed not to be necessary differentiable but only required to satisfy the incrementary ratio
\[\frac{h(\zeta + \eta) - h(\zeta)}{\eta} \in I_0, \ \eta \neq 0, \]
where I_0 is a certain sub-interval of the Routh-Hurwitz interval. The function
\[p(t, x, x', x'', x''', x^{(iv)}) \]
is assumed to have the form
\[p(t, x, x', x'', x''', x^{(iv)}) = q(t) + r(t, x, x', x'', x''', x^{(iv)}) \]