RETARDED AND MIXED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH CONTINUOUS DELAY

T. Candan1 and R. S. Dahiya2

1Department of Mathematics, Faculty of Art and Science
Nigde University, Nigde, 51200, Turkey.
email: tcandan@nigde.edu.tr
2Department of Mathematics
Iowa State University, Ames, IA 50011, U.S.A.
email: rdahiya@iastate.edu

Abstract. We obtain certain theorems to establish oscillation criteria for the arbitrary order neutral functional differential equation
\[r(t)x(t) + \int_{a}^{b} p(t,\mu)x(\tau(t,\mu))d\mu^{(n-1)} + \int_{c}^{d} q(t,\xi)f(x(\sigma(t,\xi)))d\xi = 0, \]
where \(t \geq 0, \) \(r(t) \in C^{1}([t_0,\infty), \mathbb{R}), \) \(r(t) > 0 \) and \(\int_{t_0}^{\infty} \frac{dt}{r(t)} = \infty, \) \(p(t,\mu) \in C([t_0,\infty) \times [a,b], \mathbb{R}), \) \(0 \leq P(t) = \int_{a}^{b} p(t,\mu)d\mu < 1, \) \(\tau(t,\mu) \in C([t_0,\infty) \times [a,b], \mathbb{R}), \) \(\tau(t,\mu) \leq t, \) and \(\tau(t,\mu) \to \infty \) as \(t \to \infty \) and \(\mu \in [a,b], \) \(q(t,\xi) \in C([t_0,\infty) \times [c,d], \mathbb{R}) \) and \(q(t,\xi) > 0, \) \(f(x) \in C(\mathbb{R},\mathbb{R}) \) and \(f(x) > 0 \) for \(x \neq 0, \) \(\sigma(t,\xi) \in C^{1}([t_0,\infty) \times [c,d], \mathbb{R}), \) \(\xi \in [c,d]. \)

AMS (MOS) subject classification: 34K11, 34C15.

1 Introduction

In this paper we are concerned with n-th order nonlinear neutral differential equations with continuous deviating arguments
\[r(t)x(t) + \int_{a}^{b} p(t,\mu)x(\tau(t,\mu))d\mu^{(n-1)} + \int_{c}^{d} q(t,\xi)f(x(\sigma(t,\xi)))d\xi = 0, \]
where \(t \geq 0, \) \(r(t) \in C^{1}([t_0,\infty), \mathbb{R}), \) \(r(t) > 0 \) and \(\int_{t_0}^{\infty} \frac{dt}{r(t)} = \infty, \) \(p(t,\mu) \in C([t_0,\infty) \times [a,b], \mathbb{R}), \) \(0 \leq P(t) = \int_{a}^{b} p(t,\mu)d\mu < 1, \) \(\tau(t,\mu) \in C([t_0,\infty) \times [a,b], \mathbb{R}), \) \(\tau(t,\mu) \leq t, \) and \(\tau(t,\mu) \to \infty \) as \(t \to \infty \) and \(\mu \in [a,b], \) \(q(t,\xi) \in C([t_0,\infty) \times [c,d], \mathbb{R}) \) and \(q(t,\xi) > 0, \) \(f(x) \in C(\mathbb{R},\mathbb{R}) \) and \(f(x) > 0 \) for \(x \neq 0, \) \(\sigma(t,\xi) \in C^{1}([t_0,\infty) \times [c,d], \mathbb{R}), \) \(\xi \in [c,d]. \)

A solution \(x(t) \in C([t_0,\infty), \mathbb{R}) \) of (1) is called oscillatory if \(x(t) \) has arbitrarily large zeros in \([t_0,\infty), \) \(t_0 > 0. \) Otherwise \(x(t) \) is called nonoscillatory. Recently, the following type of equations have been studied
\[y^{(n)}(t) + q(t)f(y(\sigma(t))) = 0, \]
see Abu-Kaff & Dahiya [1], and Olah [12] and [13]. Then, these results are extended to a more general equation
\[[a(t)x(t) + p(t)x(\tau(t))]^{(n-1)} + \delta q(t)f(x(\sigma(t))) = 0. \]