Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 (2003) 593-621 Copyright ©2003 Watam Press

Stability Criteria for Certain Second Order Delay Differential Equations

Baruch Cahlon and Darrell Schmidt

Department of Mathematics and Statistics Oakland University Rochester, MI 48309–4485

Abstract. In this paper we study the asymptotic stability of the zero solution of second order linear delay differential equations of the form

 $y''(t) = p_1 y'(t) + p_2 y'(t-\tau) + q_1 y(t) + q_2 y(t-\tau)$

where p_1 , p_2 , q_1 , and q_2 are certain constants. Here $\tau > 0$ is a constant. In proving our results we make use of Pontryagin's theory for quasi-polynomials.

1980 Mathematics Subject Classification (1985 Revision): 45E99, 34D99

Keywords: asymptotic stability, stability criteria, sufficient conditions, delay, characteristic functions, stability regions.

1 Introduction

The aim of this paper is to study the asymptotic stability of the zero solution of the delay differential equation

$$y''(t) = p_1 y'(t) + p_2 y'(t-\tau) + q_1 y(t) + q_2 y(t-\tau)$$
(1.1)

where $\tau > 0$ is a constant and p_1 , p_2 , q_1 , and q_2 are constants. Equations of this type appear in many applications. Delays in human reflexes lead to mathematical models of biological processes whose linearization are of this form [22,18]. In machine tool analysis an important source of instability in the cutting process is the so-called regenerative effect [24]. It is a "pasteffect" which has a clear physical explanation. The cutting force depends on the actual and delayed values of the relative displacement of the tool and the workpiece. A simple linearized mathematical model of this phenomenon leads to an equation of the form (1.1). Also stability of chemical reactions lead to such equations (See [23], Chapter 4). Equations of the form of (1.1) can be used as test equations for numerical methods. The authors are not aware of a comprehensive study of this important equation. Earlier work was done by Bhatt and Hsu [3] for special cases of equation (1.1) $(p_2 = 0 \text{ or } q_2 = 0)$ using Pontryagin's Theorems. Theorems 3.2 and 3.4 in this paper are rediscoveries of results in [3]. Since our proofs are different and short, we include them for completeness. This equation was studied by Cooke and Grossman [8]