Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10(2003) 563-578 Copyright ©2003 Watam Press

NONLINEAR ERGODIC THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

Koji Nishiura¹, Naoki Shioji² and Wataru Takahashi¹

¹Department of Mathematical and Computing Sciences Tokyo Institute of Technology

Oh-okayama, Meguro-ku, Tokyo 152–8552, Japan

²Department of Mathematics, Faculty of Engineering Yokohama National University

Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Abstract. In this paper, we study nonlinear ergodic properties for an asymptotically nonexpansive semigroup in a Banach space. We prove that if S is amenable and $S = \{T_t : t \in S\}$ is an asymptotically nonexpansive semigroup on a nonempty closed convex subset C of a uniformly convex Banach space E such that the set F(S) of common fixed points of S is nonempty, then there exists a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P = P$ for every $t \in S$ and $Px \in \overline{co}\{T_tx : t \in S\}$ for every $x \in C$. Also, if the norm of E is Fréchet differentiable, then for each $x \in C$, Px is the unique common fixed point in $\bigcap_{s \in S} \overline{co}\{T_{ts}x : t \in S\}$. Further, if $\{\mu_{\alpha}\}$ is an asymptotically invariant net of means, then for each $x \in C$, $\{T_{\mu_{\alpha}}x\}$ converges weakly to Px. Finally, we provide a necessary and sufficient condition for the existence of such a retraction P.

AMS subject classification: 47H20, 47H09

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E. Then, a mapping $T: C \to C$ is said to be Lipschitzian if there exists a nonnegative real number k such that

$$||Tx - Ty|| \le k ||x - y||$$
 for every $x, y \in C$.

T is said to be nonexpansive if k = 1. Let S be a semigroup. Then, a family $S = \{T_t : t \in S\}$ of mappings from C into itself is said to be a Lipschitzian semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ if it satisfies the following:

(1) For each $t \in S$, there exists a nonnegative real number k_t such that

$$||T_t x - T_t y|| \le k_t ||x - y||$$
 for every $x, y \in C$;

(2) $T_{st}x = T_sT_tx$ for every $s, t \in S$ and $x \in C$.

We denote by F(S) the set $\{x \in C : T_t x = x \text{ for every } t \in S\}$ of common fixed points of S. We know that if E is uniformly convex and $\inf_s \sup_t k_{ts} \leq$ 1, then F(S) is closed and convex; see [23] for details. S is said to be a nonexpansive semigroup on C if $k_t = 1$ for every $t \in S$. S is also said to be an asymptotically nonexpansive semigroup on C if $\inf_s \sup_t k_{ts} \leq 1$ and $\sup_t k_t < \infty$. In particular, S is said to be a one-parameter asymptotically