NONLINEAR ERGODIC THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

Koji Nishiura\(^1\), Naoki Shioji\(^2\) and Wataru Takahashi\(^1\)

\(^1\)Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo 152–8552, Japan

\(^2\)Department of Mathematics, Faculty of Engineering
Yokohama National University
Tokiwadai, Hodogaya-ku, Yokohama 240–8501, Japan

Abstract. In this paper, we study nonlinear ergodic properties for an asymptotically nonexpansive semigroup in a Banach space. We prove that if \(S \) is amenable and \(S = \{ T_t : t \in S \} \) is an asymptotically nonexpansive semigroup on a nonempty closed convex subset \(C \) of a uniformly convex Banach space \(E \) such that the set \(F(S) \) of common fixed points of \(S \) is nonempty, then there exists a nonexpansive retraction \(P \) of \(C \) onto \(F(S) \) such that \(PT_t = T_t P = P \) for every \(t \in S \) and \(Px \in \text{co}\{T_t x : t \in S\} \) for every \(x \in C \). Also, if the norm of \(E \) is Fréchet differentiable, then for each \(x \in C \), \(Px \) is the unique common fixed point in \(\bigcap_{t \in S} \text{co}\{T_t x : t \in S\} \). Further, if \(\{ \mu_\alpha \} \) is an asymptotically invariant net of means, then for each \(x \in C \), \(\{T_{\mu_\alpha} x\} \) converges weakly to \(Px \). Finally, we provide a necessary and sufficient condition for the existence of such a retraction \(P \).

AMS subject classification: 47H20, 47H09

1. Introduction

Let \(C \) be a nonempty closed convex subset of a real Banach space \(E \). Then, a mapping \(T : C \to C \) is said to be Lipschitzian if there exists a nonnegative real number \(k \) such that

\[
\|Tx - Ty\| \leq k\|x - y\| \quad \text{for every } x, y \in C.
\]

\(T \) is said to be nonexpansive if \(k = 1 \). Let \(S \) be a semigroup. Then, a family \(S = \{ T_t : t \in S \} \) of mappings from \(C \) into itself is said to be a Lipschitzian semigroup on \(C \) with Lipschitz constants \(\{ k_t : t \in S \} \) if it satisfies the following:

\(1 \). For each \(t \in S \), there exists a nonnegative real number \(k_t \) such that

\[
\|T_t x - T_t y\| \leq k_t \|x - y\| \quad \text{for every } x, y \in C;
\]

\(2 \). \(T_s T_t x = T_{st} x \) for every \(s, t \in S \) and \(x \in C \).

We denote by \(F(S) \) the set \(\{x \in C : T_t x = x \text{ for every } t \in S\} \) of common fixed points of \(S \). We know that if \(E \) is uniformly convex and \(\inf_t \sup_s k_{ts} \leq 1 \), then \(F(S) \) is closed and convex; see [23] for details. \(S \) is said to be a nonexpansive semigroup on \(C \) if \(k_t = 1 \) for every \(t \in S \). \(S \) is also said to be an asymptotically nonexpansive semigroup on \(C \) if \(\inf_t \sup_s k_{ts} \leq 1 \) and \(\sup_t k_t < \infty \). In particular, \(S \) is said to be a one-parameter asymptotically