ROBUST STABILITY FOR UNCERTAIN IMPULSIVE AUTOASSOCIATIVE NEURAL NETWORKS

Tong-Hui Qian¹, Zhi-Hong Guan², and Guanrong Chen³

¹Department of Automatic Control, Hankou Branch
Huazhong University of Science and Technology
Wuhan, Hubei, 430074, P.R. China

²Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan, Hubei, 430074, P.R. China

³Department of Electronic Engineering
City University of Hong Kong
Kowloon, Hong Kong SAR, P. R. China

Abstract. Many complex dynamical behaviors in the real world can be modeled by
interval impulsive differential systems or interval impulsive neural networks. This paper
formulates and studies a model for the uncertain interval impulsive autoassociative neural
networks. The fundamental issue of global exponential robust stability of this new model
is investigated and some sufficient stability conditions are obtained.

Keywords. Impulsive autoassociative neural network, uncertainty, equilibrium, robust stability.

AMS (MOS) subject classification:

1 INTRODUCTION

In the last decade, tremendous efforts have been devoted to the investigation of basic theory and potential applications of neural networks ([3-7, 10-13, 16, 18, 20]). Various neural network structures are built on the basis of fundamental principles that govern biological neural systems as well as well-established mathematical and engineering theories.

The most widely studied neural networks in the current literature may be classified into two groups: continuous and discrete networks. However, there are still many neural networks existing in the real world, which display some kind of dynamics in between these two groups, that is, in the form of impulses ([2, 4, 17, 19]). These impulsive phenomena can be found in many fields of information science, electronics, automatic control systems, computer networking, artificial intelligence, robotics, and telecommunications. Therefore,

¹Supported by the National Natural Science Foundation of China under Grants 60074009 and 60174044, Hong Kong CERG Grant 9040579, the Doctorate Foundation of the Education Ministry of China under Grant 1999045718, and the Foundation for University Key Teachers by the Education Ministry of China.