SEMILINEAR ELLIPTIC SYSTEMS WITH LACK OF SYMMETRY

A.M. Candela¹, A. Salvatore² and M. Squassina³

^{1,2} Dipartimento Interuniversitario di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy

> ³ Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy

Abstract. By means of a perturbative method introduced by Bolle we give a multiplicity result for a system of semilinear elliptic equations with non-homogeneous boundary conditions in the presence of a generic superquadratic odd nonlinear term.

Keywords. Inhomogeneous boundary value problems, semilinear elliptic systems, perturbation theory, variational methods.

AMS subject classification: 35J55, 35J59, 58E05.

1 Introduction

Let $N\geqslant 1$ and $n\geqslant 2$. The main goal of this paper is to prove the existence of multiple solutions $u=(u_1,\ldots,u_N):\overline{\varOmega}\to\mathbb{R}^N$ for the semilinear elliptic system

$$\begin{cases} -\sum_{i,j=1}^{n} \sum_{h=1}^{N} D_{j}(a_{ij}^{hk}(x)D_{i}u_{h}) = g_{k}(x,u) + \varphi_{k}(x) & \text{in } \Omega \\ u = \chi & \text{on } \partial\Omega \end{cases}$$
 $(\mathcal{S}_{\chi,\varphi,N})$

where Ω is a smooth bounded domain in \mathbb{R}^n , $\varphi = (\varphi_1, \dots, \varphi_N) \in L^2(\Omega, \mathbb{R}^N)$, $\chi \in H^{1/2}(\partial\Omega, \mathbb{R}^N) \cap C(\partial\Omega, \mathbb{R}^N)$ and the coefficients $a_{ij}^{hk} \in C(\overline{\Omega}, \mathbb{R})$ are such that $a_{ij}^{hk} = a_{ji}^{kh}$. Assume that the Legendre–Hadamard condition holds, i.e., there exists $\nu > 0$ such that

$$\sum_{i,j=1}^{n} \sum_{h,k=1}^{N} a_{ij}^{hk}(x) \xi_{i} \xi_{j} \eta^{h} \eta^{k} \geqslant \nu |\xi|^{2} |\eta|^{2}$$
(1.1)

for all $x \in \Omega$ and $(\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^N$. Moreover, suppose that the nonlinear term $g = (g_1, \dots, g_N) \in C(\overline{\Omega} \times \mathbb{R}^N, \mathbb{R}^N)$ admits a potential G of class C^1 such that

$$\nabla_s G(x,s) = g(x,s), \quad G(x,0) = 0 \quad \text{for all } (x,s) \in \Omega \times \mathbb{R}^N$$