NONOSCILLATION RESULTS FOR NONLINEAR SYSTEMS WITH NONDECREASING ENERGY

John R. Graef¹, János Karsai², and Bo Yang³

¹Department of Mathematics
University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA

²Department of Medical Informatics
Albert Szent-Györgyi Medical University
Szeged, Korányi fasor 9, Hungary

³Department of Mathematics and Statistics
Mississippi State University
Mississippi State, MS 39762

Abstract. We consider the nonlinear system with impulsive perturbation
\[
(\phi_\beta(x'))' + f(x) = 0 \quad (t \neq t_n), \quad x'(t_n + 0) = b_n x'(t_n)
\]
where \(n = 1, 2, \ldots \), \(\phi_\beta(u) = |u|^\beta \text{sgn } u \) with \(\beta > 0 \), \(uf(u) > 0 \) for \(u \neq 0 \), and \(b_n \geq 1 \).

We give criteria to guarantee that certain solutions of this system are nonoscillatory. We apply the results to the differential equation
\[
(\phi_\beta(x'))' + q(t)f(x) = 0
\]
with a nonincreasing step-function \(q(t) \) and formulate sharp nonoscillation criteria.

AMS (MOS) subject classification: 34D05, 34D20, 34C15

1. Introduction

Consider the impulsively perturbed system
\[
(\phi_\beta(x'))' + f(x) = 0, \quad t \neq t_n, \quad x(t_n + 0) = x(t_n), \quad x'(t_n + 0) = b_n x'(t_n),
\]
where \(0 \leq t_1 < t_2, \ldots, t_n < t_{n+1}, t_n \to \infty \) as \(n \to \infty \), \(b_n \geq 1 \) for \(n = 1, 2, \ldots \), \(\phi_\beta(u) = |u|^\beta \text{sgn } u \) with \(\beta > 0 \), \(f : \mathbb{R} \to \mathbb{R} \) is continuous and odd, and \(uf(u) > 0 \) for \(u \neq 0 \). Define the energy function
\[
V(x, y) = y\phi_\beta(y) - \int_0^y \phi_\beta(s) \, ds + \int_0^x f(s) \, ds =: \Phi_\beta(y) + F(x),
\]
where \(\Phi_\beta(y) = \frac{\beta}{\beta+1} |y|^\beta+1 \). Note that the functions \(F \) and \(\Phi_\beta \) are both even and positive definite.

It is easy to verify that \(V(t) = V(x(t), x'(t)) \) is constant along the solutions of the equation without impulses
\[
(\phi_\beta(x'))' + f(x) = 0,
\]